Respuesta :
Answer: a) Independent
b) Independent
c) Dependent
Step-by-step explanation:
Since, If a coin is tossed three times,
Then, total number of outcomes, n(S) = 8
a) [tex]E_1[/tex] : tails comes up with the coin is tossed the first time;
[tex]E_1[/tex] = { TTT, THH, THT, TTH }
[tex]E_2[/tex] : heads comes up when the coin is tossed the second time.
[tex]E_2[/tex] = { THT, HHH, THH, HHT }
Thus, [tex]n(E_1)=4[/tex]
⇒ [tex]P(E_1)=\frac{n(E_1)}{n(S)}=\frac{4}{8}=\frac{1}{2} [/tex]
Similarly, [tex]P(E_2)=\frac{1}{2}[/tex]
⇒ [tex]P(E_1)\times P(E_2)=\frac{1}{2}\times \frac{1}{2}=\frac{1}{4} [/tex]
Since, [tex]E_1\cap E_2 [/tex] = { THH, THT }
[tex]n(E_1\cap E_2) = 2 [/tex]
⇒ [tex]P(E_1\cap E_2) = \frac{n(E_1\cap E_2)}{n(S)}= \frac{2}{8}=\frac{1}{4}[/tex]
Thus, [tex]P(E_1\cap E_2)=P(E_1)\timesP(E_2)[/tex]
Therefore, [tex]E_1[/tex] and [tex]E_2[/tex] are independent events.
B) [tex]E_1[/tex] : the first coin comes up tails
[tex]E_1[/tex] = { TTT, THH, THT, TTH }
[tex]E_2[/tex] : two, and not three, heads come up in a row
[tex]E_2[/tex] = { HHT, THH }
Thus, [tex]n(E_1)=4[/tex]
⇒ [tex]P(E_1)=\frac{n(E_1)}{n(S)}=\frac{4}{8}=\frac{1}{2} [/tex]
Similarly, [tex]P(E_2)=\frac{1}{4}[/tex]
⇒ [tex]P(E_1)\times P(E_2)=\frac{1}{2}\times \frac{1}{4}=\frac{1}{8} [/tex]
Since, [tex]E_1\cap E_2 [/tex] = { THH }
[tex]n(E_1\cap E_2) = 1 [/tex]
⇒ [tex]P(E_1\cap E_2) = \frac{n(E_1\cap E_2)}{n(S)}= \frac{1}{8}[/tex]
Thus, [tex]P(E_1\cap E_2)=P(E_1)\timesP(E_2)[/tex]
Therefore, [tex]E_1[/tex] and [tex]E_2[/tex] are independent events.
C) [tex]E_1[/tex] : the second coin comes up tails;
[tex]E_1[/tex] = { HTH, HTT, TTT, TTH }
[tex]E_2[/tex] : two, and not three, heads come up in a row
[tex]E_2[/tex] = { HHT, THH }
Thus, [tex]n(E_1)=4[/tex]
⇒ [tex]P(E_1)=\frac{n(E_1)}{n(S)}=\frac{4}{8}=\frac{1}{2} [/tex]
Similarly, [tex]P(E_2)=\frac{1}{4}[/tex]
⇒ [tex]P(E_1)\times P(E_2)=\frac{1}{2}\times \frac{1}{4}=\frac{1}{8} [/tex]
Since, [tex]E_1\cap E_2 [/tex] = [tex]\phi[/tex]
[tex]n(E_1\cap E_2) = 0 [/tex]
⇒ [tex]P(E_1\cap E_2) = 0[/tex]
Thus, [tex]P(E_1\cap E_2)\neq P(E_1)\timesP(E_2)[/tex]
Therefore, [tex]E_1[/tex] and [tex]E_2[/tex] are dependent events.
Answer:
P (E1) = 18 / 38
P (E2) = 18 / 38
P (E1 and E2) = 10 / 38
Step-by-step explanation:
