Two events E1 and E2 are called independent if p(E1 â© E2) = p(E1)p(E2). For each of the following pairs of events, which are subsets of the set of all possible outcomes when a coin is tossed three times, determine whether or not they are independent. a) E1: tails comes up with the coin is tossed the first time; E2: heads comes up when the coin is tossed the second time. b) E1: the first coin comes up tails; E2: two, and not three, heads come up in a row. c) E1: the second coin comes up tails; E2: two, and not three, heads come up in a row.

Respuesta :

Answer:  a) Independent

b) Independent

c) Dependent

Step-by-step explanation:

Since, If a coin is tossed three times,

Then, total number of outcomes, n(S) = 8

a)  [tex]E_1[/tex] : tails comes up with the coin is tossed the first time;

[tex]E_1[/tex] = { TTT, THH, THT, TTH }

[tex]E_2[/tex] :  heads comes up when the coin is tossed the second time.

[tex]E_2[/tex] = { THT, HHH, THH, HHT }

Thus, [tex]n(E_1)=4[/tex]

⇒  [tex]P(E_1)=\frac{n(E_1)}{n(S)}=\frac{4}{8}=\frac{1}{2} [/tex]

Similarly,  [tex]P(E_2)=\frac{1}{2}[/tex]

⇒  [tex]P(E_1)\times P(E_2)=\frac{1}{2}\times \frac{1}{2}=\frac{1}{4} [/tex]

Since,   [tex]E_1\cap E_2 [/tex] = { THH, THT }

[tex]n(E_1\cap E_2) = 2 [/tex]

⇒ [tex]P(E_1\cap E_2) = \frac{n(E_1\cap E_2)}{n(S)}= \frac{2}{8}=\frac{1}{4}[/tex]

Thus,  [tex]P(E_1\cap E_2)=P(E_1)\timesP(E_2)[/tex]

Therefore,  [tex]E_1[/tex] and [tex]E_2[/tex] are independent events.

B)  [tex]E_1[/tex] :  the first coin comes up tails

[tex]E_1[/tex] = { TTT, THH, THT, TTH }

[tex]E_2[/tex] :   two, and not three, heads come up in a row

[tex]E_2[/tex] = { HHT, THH }

Thus, [tex]n(E_1)=4[/tex]

⇒  [tex]P(E_1)=\frac{n(E_1)}{n(S)}=\frac{4}{8}=\frac{1}{2} [/tex]

Similarly,  [tex]P(E_2)=\frac{1}{4}[/tex]

⇒  [tex]P(E_1)\times P(E_2)=\frac{1}{2}\times \frac{1}{4}=\frac{1}{8} [/tex]

Since,   [tex]E_1\cap E_2 [/tex] = { THH }

[tex]n(E_1\cap E_2) = 1 [/tex]

⇒ [tex]P(E_1\cap E_2) = \frac{n(E_1\cap E_2)}{n(S)}= \frac{1}{8}[/tex]

Thus,  [tex]P(E_1\cap E_2)=P(E_1)\timesP(E_2)[/tex]

Therefore,  [tex]E_1[/tex] and [tex]E_2[/tex] are independent events.

C)  [tex]E_1[/tex] :  the second coin comes up tails;

[tex]E_1[/tex] = { HTH, HTT, TTT, TTH }

[tex]E_2[/tex] :   two, and not three, heads come up in a row

[tex]E_2[/tex] = { HHT, THH }

Thus, [tex]n(E_1)=4[/tex]

⇒  [tex]P(E_1)=\frac{n(E_1)}{n(S)}=\frac{4}{8}=\frac{1}{2} [/tex]

Similarly,  [tex]P(E_2)=\frac{1}{4}[/tex]

⇒  [tex]P(E_1)\times P(E_2)=\frac{1}{2}\times \frac{1}{4}=\frac{1}{8} [/tex]

Since,   [tex]E_1\cap E_2 [/tex] = [tex]\phi[/tex]

[tex]n(E_1\cap E_2) = 0 [/tex]

⇒ [tex]P(E_1\cap E_2) = 0[/tex]

Thus,  [tex]P(E_1\cap E_2)\neq P(E_1)\timesP(E_2)[/tex]

Therefore,  [tex]E_1[/tex] and [tex]E_2[/tex] are dependent events.


Answer:

P (E1) = 18 / 38

P (E2) = 18 / 38

P (E1 and E2) = 10 / 38

Step-by-step explanation:

RELAXING NOICE
Relax