Look at the picture.
[tex]\csc\theta=\dfrac{1}{\sin\theta}=\dfrac{1}{\frac{y}{r}}=\dfrac{r}{y}[/tex]
We have the right triangle x, y and r. From the Pythagorean theorem we have:
[tex]r^2=x^2+y^2\to r=\sqrt{x^2+y^2}[/tex]
We have the point
[tex]\left(-\dfrac{2}{3};\ \dfrac{\sqrt5}{3}\right)[/tex]
Substitute:
[tex]r=\sqrt{\left(-\dfrac{2}{3}\right)^2+\left(\dfrac{\sqrt5}{3}\right)^2}\\\\r=\sqrt{\dfrac{4}{9}+\dfrac{5}{9}}\\\\r=\sqrt{\dfrac{9}{9}}\\\\r=1[/tex]
[tex]\csc\theta=\dfrac{1}{\frac{\sqrt5}{3}}=\dfrac{3}{\sqrt5}=\dfrac{3\cdot\sqrt5}{\sqrt5\cdot\sqrt5}=\boxed{\dfrac{3\sqrt5}{5}}[/tex]