Using the completing-the-square method, rewrite f(x) = x2 − 8x + 3 in vertex form.


A) f(x) = (x − 8)^2


B) f(x) = (x − 4)^2 − 13


C) f(x) = (x − 4)^2 + 3


D) f(x) = (x − 4)^2 + 16

Respuesta :

Answer:

B

Step-by-step explanation:

f(x) = [tex]x^{2} -8x+3[/tex]

=> f(x)= [tex]x^{2} -2(x)(4)+4^{2}-4^{2}+3[/tex]

=> f(x) = [tex](x-4)^{2}-4^{2}+3[/tex]

=> f(x) = [tex](x-4)^{2}-16+3[/tex]

=> f(x) = [tex](x-4)^{2}-13[/tex]

Answer:

f(x) = (x - 4)² - 13

Step-by-step explanation:

f(x) = x² − 8x + 3

x² − 8x + 3 = 0

x² - 8x = -3

x² - 8x + 4² = -3 + 4²

x² - 8x + 4² = -3 + 16

x² - 8x + 4² = 13

(x - 4)² = 13

(x - 4)² - 13 = 0

The vertex form of a quadriatic function  f(x) = x2 − 8x + 3 is;

f(x) = (x - 4)² - 13

ACCESS MORE