Respuesta :
Answer: y = 5.5
Step-by-step explanation:
[tex]y=\dfrac{1}{2}x^2+6x+24[/tex]
Step 1: find the vertex
axis of symmetry: [tex]x = \dfrac{-b}{2a} = \dfrac{-6}{2(\frac{1}{2})} =\dfrac{-6}{1} = -6[/tex]
y-coordinate of vertex: [tex]y=\dfrac{1}{2}(-6)^2+6(-6)+24[/tex]
= 18 - 36 + 24
= 6
Vertex: (-6, 6)
Step 2: find p (the distance from the vertex to the focus): [tex]\dfrac{1}{4p} =a[/tex]
[tex]\dfrac{1}{4p} =\dfrac{1}{2}[/tex]
cross multiply to get: 2 = 4p
divide both sides by 4 to get: [tex]p =\dfrac{1}{2}[/tex]
Step 3: find the directrix
Since the parabola opens up, the focus will be above the vertex.
focus: (-6, 6 + [tex]\dfrac{1}{2}[/tex]) = (-6, 6.5)
and the directrix will be below the vertex.
directrix: y = 6 - [tex]\dfrac{1}{2}[/tex] ⇒ y = 5.5

The directrix also gets shiftd toward right. Then the equation of the directrix of the parabola will be y = 11/2.
What is the parabola?
The equation of a parabola function is given as,
y² = 4ax
x² = 4ay
Where a is the coordinate of the focus.
The equation of a parabola is given.
y = (1/2) x² + 6x + 24
Simplify the equation, we have
2y = x² + 12x + 48
2y = x² + 12x + 36 + 12
2y = (x + 6)² + 12
Then the equation can be written as,
4(1/2)y = (x + 6)² + 12
Compare with standard equation, we have
a = (-1/2, 0)
The parabola is gets shifted toward right.
Then the directrix also gets shiftd toward right.
Then the equation the directrix will be
y = -1/2 + 6
y = 11/2
More about the parabola link is given below.
https://brainly.com/question/8495504
#SPJ2