Respuesta :

Answer:

[tex]b=4\text { or }b=-2[/tex]

Step-by-step explanation:  

We have been given a rational expression: [tex]\frac{2b^2+3b-10}{b^2-2b-8}[/tex] and we are asked to find the illegal values of b.

Illegal values of b will be those values, which will make our denominator 0.

To solve for illegal or excluded values of b, let us set our denominator equal to 0.

[tex]b^2-2b-8=0[/tex]

We will factor out our equation by splitting the middle term.

[tex]b^2-4b+2b-8=0[/tex]

[tex]b(b-4)+2(b-4)=0[/tex]

[tex](b-4)(b+2)=0[/tex]

[tex]b-4=0\text { or }b+2=0[/tex]

[tex]b=4\text { or }b=-2[/tex]

Therefore, [tex]b=4\text { or }b=-2[/tex] are illegal values of b in the given fraction.

ACCESS MORE