Find the number of units that produce a maximum revenue, R =95x-0.1x^2, where R is the total revenue in dollars and x is the number of units sold

Respuesta :

Answer:

[tex]x=475[/tex] units

Step-by-step explanation:

Method 1

The given revenue function is [tex]R(x)=95x-0.1x^2[/tex].


We rewrite this function in the vertex form by completing the square.


[tex]\Rightarrow R(x)=-0.1x^2+95x[/tex].


[tex]\Rightarrow R(x)=-0.1(x^2-950x)+0[/tex].


We add and subtract half the coefficient of [tex]x[/tex] multiplied by a factor of [tex]-0.1[/tex], which is [tex]-0.1(-\frac{950}{2})^2=-0.1( -475)^2[/tex] to get,

[tex]R(x)=-0.1(x^2-950x)+-0.1(-475)^2--0.1(-475)^2 +0[/tex].


We factor [tex]-0.1[/tex] out of the first two expressions again to get,


[tex]R(x)=-0.1(x^2-950x+(-475)^2)--0.1(-475)^2 +0[/tex].


We now got a perfect square.


[tex]\Rightarrow R(x)=-0.1(x-475)^2+22562.5[/tex].


Therefore the maximum revenue occurs when [tex]x=475[/tex] units were sold.


Method 2


Use derivatives to find the x-value of the maximum point.

[tex]R(x)=-0.1x^2+95x[/tex]


[tex]R'(x)=-0.2x+95[/tex]


At maximum point,


[tex]R'(x)=0[/tex]


[tex]\Rightarrow -0.2x+95=0[/tex].


[tex]\Rightarrow -0.2x=-95[/tex].


[tex]\Rightarrow x=\frac{-95}{-0.2}[/tex].


[tex]\Rightarrow x=475[/tex].















ACCESS MORE