Answer:
[tex]x=475[/tex] units
Step-by-step explanation:
Method 1
The given revenue function is [tex]R(x)=95x-0.1x^2[/tex].
We rewrite this function in the vertex form by completing the square.
[tex]\Rightarrow R(x)=-0.1x^2+95x[/tex].
[tex]\Rightarrow R(x)=-0.1(x^2-950x)+0[/tex].
We add and subtract half the coefficient of [tex]x[/tex] multiplied by a factor of [tex]-0.1[/tex], which is [tex]-0.1(-\frac{950}{2})^2=-0.1( -475)^2[/tex] to get,
[tex]R(x)=-0.1(x^2-950x)+-0.1(-475)^2--0.1(-475)^2 +0[/tex].
We factor [tex]-0.1[/tex] out of the first two expressions again to get,
[tex]R(x)=-0.1(x^2-950x+(-475)^2)--0.1(-475)^2 +0[/tex].
We now got a perfect square.
[tex]\Rightarrow R(x)=-0.1(x-475)^2+22562.5[/tex].
Therefore the maximum revenue occurs when [tex]x=475[/tex] units were sold.
Method 2
Use derivatives to find the x-value of the maximum point.
[tex]R(x)=-0.1x^2+95x[/tex]
[tex]R'(x)=-0.2x+95[/tex]
At maximum point,
[tex]R'(x)=0[/tex]
[tex]\Rightarrow -0.2x+95=0[/tex].
[tex]\Rightarrow -0.2x=-95[/tex].
[tex]\Rightarrow x=\frac{-95}{-0.2}[/tex].
[tex]\Rightarrow x=475[/tex].