Answer: The end behavior of the given function is,
[tex]f(x)\rightarrow 0[/tex] as [tex]x\rightarrow -\infty[/tex]
And, [tex]f(x)\rightarrow \infty[/tex] as [tex]x\rightarrow \infty[/tex]
Step-by-step explanation:
Since, by the property of the graph of the exponential function,
If an exponential function is, [tex]f(x) = ab^x[/tex]
If b >1 ( increasing function ) then its end behavior is,
[tex]f(x)\rightarrow 0[/tex] as [tex]x\rightarrow -\infty[/tex]
And, [tex]f(x)\rightarrow \infty[/tex] as [tex]x\rightarrow \infty[/tex]
While b < 1 ( decreasing function, then its end behavior is,
[tex]f(x)\rightarrow \infty[/tex] as [tex]x\rightarrow -\infty[/tex]
And, [tex]f(x)\rightarrow 0[/tex] as [tex]x\rightarrow \infty[/tex]
Here, given function is, [tex]f(x)=5^{x-1}[/tex]
Since 5 > 1
Therefore, the end behavior of the given function is,
[tex]f(x)\rightarrow 0[/tex] as [tex]x\rightarrow -\infty[/tex]
And, [tex]f(x)\rightarrow \infty[/tex] as [tex]x\rightarrow \infty[/tex]