The function f(x)=5^(x-1) is shown on the coordinate plane. Select from the drop down menus to correctly describe the end behavior of f(x)

Respuesta :

Answer: The end behavior of the given function is,

[tex]f(x)\rightarrow 0[/tex] as [tex]x\rightarrow -\infty[/tex]

And, [tex]f(x)\rightarrow \infty[/tex] as [tex]x\rightarrow \infty[/tex]

Step-by-step explanation:

Since, by the property of the graph of the exponential function,

If an exponential function is, [tex]f(x) = ab^x[/tex]

If b >1 ( increasing function ) then its end behavior is,

[tex]f(x)\rightarrow 0[/tex] as [tex]x\rightarrow -\infty[/tex]

And, [tex]f(x)\rightarrow \infty[/tex] as [tex]x\rightarrow \infty[/tex]

While b < 1 ( decreasing function, then its end behavior is,

[tex]f(x)\rightarrow \infty[/tex] as [tex]x\rightarrow -\infty[/tex]

And, [tex]f(x)\rightarrow 0[/tex] as [tex]x\rightarrow \infty[/tex]

Here, given function is,  [tex]f(x)=5^{x-1}[/tex]

Since 5 > 1

Therefore, the end behavior of the given function is,

[tex]f(x)\rightarrow 0[/tex] as [tex]x\rightarrow -\infty[/tex]

And, [tex]f(x)\rightarrow \infty[/tex] as [tex]x\rightarrow \infty[/tex]

Ver imagen parmesanchilliwack
ACCESS MORE