Respuesta :
Answer:
Slope of function A is 6 and slope of function B is 3. Slope of A is twice of slope of function B. The relationship between slopes is
[tex]\text{Slope of Function A}=2\times \text{Slope of Function B}[/tex]
Step-by-step explanation:
The function A is,
[tex]f(x)=6x-1[/tex]
It can be written as,
[tex]y=6x-1[/tex]
It is the slope intercept form like [tex]y=mx+c[/tex], where m is the slope. On comparing the function A with the slope intercept form, we get the value of slope of function A is 6.
[tex]m_{A}=6[/tex]
The graph of function B passing through the point (1,4), (-1,-2) and (-2,-5).
If a line passing through the points and , then the slope of line is,
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Choose any two points of function B. Let the function B is passing through the points (1,4) and (-1,-2).
[tex]m_{B}=\frac{-2-4}{-1-1}[/tex]
[tex]m_{B}=\frac{-6}{-2}[/tex]
[tex]m_{B}=3[/tex]
The slope of function B is 3.
Since slope of function A is 6 and the slope of function B is 3, so we can say that the slope of function A is twice of slope of function B.
[tex]\text{Slope of Function A}=2\times \text{Slope of Function B}[/tex]
Answer:
slope of function a = -2
slope of function b = (1 + 5)/(2 + 1) = 6/3 = 2
slope of function b = - slope of function a.
Step-by-step explanation: