Respuesta :
Answer:
- 23 are on plan B
- 13 on plan B text
- 13/23 is the probability a customer on plan B will text
Step-by-step explanation:
Assuming the categorization is mutually exclusive (customers either text or internet, but not both), the total number of Plan B customers in the sample is the sum of those in each category:
.... 13 + 10 = 23 . . . . plan B customers
The problem statement tells you
... 23 plan B customers text
Since 13 out of 23 customers surveyed use the phone for text, the empirical probability that a plan B customer will use the phone for texting is ...
... 13/23 . . . . probability that text is used most
There are 23 customers are on payment plan B.
There are 13 customers who are on plan B text.
The probability that a randomly selected customer who is on plan B uses the phone most often to text is 13/23.
Given
A phone company surveys a sample of current customers to determine if they use their phones most often to text or use the Internet.
They sort the data by payment plans, as shown below.
Plan A: 27 texts, 21 Internet
Plan B: 13 texts, 10 Internet
What is probability?
The probability is defined as the ratio of the sum of all observations and the total number of observations.
The total number of observation is;
= 13 +10 = 23
1. How many customers are on payment plan B?
There are 23 customers are on payment plan B.
2. How many of the customers are on plan B text?
There are 13 customers who are on plan B text.
3. What is the probability that a randomly selected customer who is on plan B uses the phone most often to text?
[tex]\rm Probability = \dfrac{Customer \ plan \ B}{Total \ number \ of \ customers}\\\\Probability = \dfrac{13}{23}[/tex]
The probability that a randomly selected customer who is on plan B uses the phone most often to text is 13/23.
To know more about probability click the link given below.
https://brainly.com/question/743479