Respuesta :

Answer:

Final answer will be the choice which matches best with expression

[tex]\frac{x^2+4x-1}{x\left(x+2\right)}[/tex] or

[tex]\frac{x^2+4x-1}{x^2+2x}[/tex]


Step-by-step explanation:

Given expression is:

[tex]\frac{\left(x+5\right)}{\left(x+2\right)}-\frac{\left(x+1\right)}{\left(x^2+2x\right)}[/tex]

We begin by factoring denominators:

[tex]=\frac{\left(x+5\right)}{\left(x+2\right)}-\frac{\left(x+1\right)}{x\left(x+2\right)}[/tex]

Multiply and divide first term by (x) to make denominators equal.

[tex]=\frac{x\left(x+5\right)}{x\left(x+2\right)}-\frac{\left(x+1\right)}{x\left(x+2\right)}[/tex]

Since denominators are equal so we can combine numerators.

[tex]=\frac{x\left(x+5\right)-\left(x+1\right)}{x\left(x+2\right)}[/tex]

Now simplify

[tex]=\frac{x^2+5x-x-1}{x\left(x+2\right)}[/tex]


[tex]=\frac{x^2+4x-1}{x\left(x+2\right)}[/tex]


[tex]=\frac{x^2+4x-1}{x^2+2x}[/tex]

Hence final answer will be the choice which matches best with expression

[tex]\frac{x^2+4x-1}{x\left(x+2\right)}[/tex] or

[tex]\frac{x^2+4x-1}{x^2+2x}[/tex]


ACCESS MORE