If the points P (7, 12), Q (-3, -12) and R (14, 5) lie on a circle with the center C (0, 2), then the distance OP, OQ and OR are the same.
The formula of a distance between two points:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Substitute:
[tex]OP=\sqrt{(2-7)^2+(0-12)^2}=\sqrt{(-5)^2+(-12)^2}=\sqrt{25+144}=\sqrt{169}\\\\\boxed{OP=13}\\\\OQ=\sqrt{(2-(-3))^2+(0-(-12))^2}=\sqrt{5^2+12^2}=\sqrt{25+144}=\sqrt{169}\\\\\boxed{OQ=13}\\\\OR=\sqrt{(2-14)^2+(0-5)^2}=\sqrt{(-12)^2+(-5)^2}=\sqrt{144+25}=\sqrt{169}\\\\\boxed{OR=13}[/tex]
OP = OQ = OR, therefore the points P, Q and R lie on one circle.