Given the following figure, what is the measure of angle B?

Answer:
132°
Step-by-step explanation:
Sum of the interior angles of a polygon is given by the formula:
[tex](n-2)*180[/tex]
Where [tex]n[/tex] is the number of sides of the polygon.
The figure shows a 5 sided polygon (aka Pentagon). So the sum of all the angles is:
Sum = [tex](5-2)*180\\=3*180\\=540[/tex]
If we add up all the expressions/angles given and equate to 540, we can figure out [tex]x[/tex]. So:
[tex]84+13x+6+9x-16+92+12x=540\\34x+166=540\\34x=540-166\\34x=374\\x=\frac{374}{34}=11[/tex]
But angle B measures [tex]12x[/tex], so plugging in [tex]x=11[/tex], we have:
Angle B = [tex]12x=12(11)=132[/tex]°
Second answer is right.