Answer:
Given : scale factor(k) = [tex]\frac{3}{4}[/tex]
Labelled the given diagram as A, B , C and D
Also, From the given quadrilateral figure:
The coordinates are;
A=(-8, 4).
B=(-4, -4),
C=(0, -8) and
D=(4, -4)
The rule of dilation with scale factor k and centered at origin is given by;
[tex](x, y) \rightarrow (kx, ky)[/tex]
or
[tex](x, y) \rightarrow (\frac{3}{4}x, \frac{3}{4}y)[/tex]
Then, the coordinates of the dilated given figures are;
[tex]A(-8, 4) \rightarrow (\frac{3}{4}(-8), \frac{3}{4}(4)) = A'(-6, 3)[/tex]
[tex]B(-4, -4) \rightarrow (\frac{3}{4}(-4), \frac{3}{4}(-4)) = B'(-3, -3)[/tex]
[tex]C(0, -8) \rightarrow (\frac{3}{4}(0), \frac{3}{4}(-8))=C' (0 , -6)[/tex]
[tex]D(4, -4) \rightarrow (\frac{3}{4}(4), \frac{3}{4}(-4)) = D'(3, -3)[/tex]
You can see the graph given below in the attachment