Respuesta :

Answer:

Option B is correct

the degree of rotation is, [tex]-90^{\circ}[/tex]

Step-by-step explanation:

A rotation matrix is a matrix that is used to perform a rotation in Euclidean space.

To find the degree of rotation using a standard rotation matrix i.e,

[tex]R = \begin{bmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}[/tex]

Given the matrix: [tex]\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}[/tex]

Now, equate the given matrix with standard matrix we have;

[tex]\begin{bmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}[/tex] =  [tex]\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}[/tex]

On comparing we get;

[tex]\cos \theta = 0[/tex]       and [tex]-\sin \theta =1[/tex]  

As,we know:

  • [tex]\cos \theta = \cos(-\theta)[/tex]
  • [tex]\sin(-\theta) = -\sin \theta[/tex]

[tex]\cos \theta = \cos(90^{\circ}) = \cos( -90^{\circ})[/tex]

we get;

[tex]\theta = -90^{\circ}[/tex]

and

[tex]\sin \theta =- \sin (90^{\circ}) = \sin ( -90^{\circ})[/tex]

we get;

[tex]\theta = -90^{\circ}[/tex]

Therefore, the degree of rotation is, [tex]-90^{\circ}[/tex]

ACCESS MORE