What degree of rotation is represented on this matrix

Answer:
Option B is correct
the degree of rotation is, [tex]-90^{\circ}[/tex]
Step-by-step explanation:
A rotation matrix is a matrix that is used to perform a rotation in Euclidean space.
To find the degree of rotation using a standard rotation matrix i.e,
[tex]R = \begin{bmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}[/tex]
Given the matrix: [tex]\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}[/tex]
Now, equate the given matrix with standard matrix we have;
[tex]\begin{bmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}[/tex] = [tex]\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}[/tex]
On comparing we get;
[tex]\cos \theta = 0[/tex] and [tex]-\sin \theta =1[/tex]
As,we know:
[tex]\cos \theta = \cos(90^{\circ}) = \cos( -90^{\circ})[/tex]
we get;
[tex]\theta = -90^{\circ}[/tex]
and
[tex]\sin \theta =- \sin (90^{\circ}) = \sin ( -90^{\circ})[/tex]
we get;
[tex]\theta = -90^{\circ}[/tex]
Therefore, the degree of rotation is, [tex]-90^{\circ}[/tex]