based on the polynomial remainder theorem, what is the value of the function when x=5? f(x)=x^4-2x^3+5x^2-7x+4

Answer:
f(5)=469
Step-by-step explanation:
To find the value of the polynomial at x=5, we substitute the value 5 in for x into the polynomial. We then simplify using PEMDAS or order of operations.
[tex]x^4-2x^3+5x^2-7x+4\\(5)^4-2(5)^3+5(5)^2-7(5)+4\\625-250+125-35+4\\375+125-35+4\\500-35+4\\465+4\\469\\f(5)=469[/tex]