Respuesta :

Answer:

[tex]\frac{BE}{EC} =\frac{1}{3}[/tex]

Step-by-step explanation:

In the diagram below we have

ABCD is a parallelogram. K is the point on diagonal BD, such that

[tex]\frac{BK}{CK} =\frac{1}{4}[/tex]

And AK meets BC at E

now in Δ AKD and Δ BKE

∠AKD =∠BKE                ( vertically opposite angles are equal)

since BC ║ AD and BD is transversal

∠ADK = ∠KBE     ( alternate interior angles are equal )

By angle angle (AA) similarity theorem

Δ ADK  and Δ EBK are similar

so we have

[tex]\frac{AD}{BE} =\frac{DK}{BK}[/tex]

[tex]\frac{AD}{BE} =\frac{4}{1}[/tex]

[tex]\frac{BC}{BE}=\frac{4}{1}[/tex]     ( ABCD is parallelogram so AD=BC)

[tex]\frac{BE+EC}{BE}=\frac{4}{1}[/tex]         ( BC= BE+EC)

[tex]\frac{BE}{BE} +\frac{EC}{BE}=\frac{4}{1}[/tex]

[tex]1+\frac{EC}{BE}=4[/tex]

[tex]\frac{EC}{BE}=3[/tex]  ( subtracting 1 from both side )

[tex]\frac{EC}{BE}=\frac{3}{1}[/tex]

taking reciprocal both side

[tex]\frac{BE}{EC} =\frac{1}{3}[/tex]


ACCESS MORE