Answer:
[tex]\frac{BE}{EC} =\frac{1}{3}[/tex]
Step-by-step explanation:
In the diagram below we have
ABCD is a parallelogram. K is the point on diagonal BD, such that
[tex]\frac{BK}{CK} =\frac{1}{4}[/tex]
And AK meets BC at E
now in Δ AKD and Δ BKE
∠AKD =∠BKE ( vertically opposite angles are equal)
since BC ║ AD and BD is transversal
∠ADK = ∠KBE ( alternate interior angles are equal )
By angle angle (AA) similarity theorem
Δ ADK and Δ EBK are similar
so we have
[tex]\frac{AD}{BE} =\frac{DK}{BK}[/tex]
[tex]\frac{AD}{BE} =\frac{4}{1}[/tex]
[tex]\frac{BC}{BE}=\frac{4}{1}[/tex] ( ABCD is parallelogram so AD=BC)
[tex]\frac{BE+EC}{BE}=\frac{4}{1}[/tex] ( BC= BE+EC)
[tex]\frac{BE}{BE} +\frac{EC}{BE}=\frac{4}{1}[/tex]
[tex]1+\frac{EC}{BE}=4[/tex]
[tex]\frac{EC}{BE}=3[/tex] ( subtracting 1 from both side )
[tex]\frac{EC}{BE}=\frac{3}{1}[/tex]
taking reciprocal both side
[tex]\frac{BE}{EC} =\frac{1}{3}[/tex]