Respuesta :

Answer:

Two pairs of alternate interior angles are→1) ∠3 , ∠5 and ∠4 , ∠6

                                                               and 2) ∠7 , ∠9 and ∠8 , ∠10

Four pairs of corresponding angles are → 1) ∠1 , ∠5 and ∠2 , ∠6

                                                                     2) ∠4 , ∠8 and ∠3 , ∠7

                                                                     3) ∠5 , ∠9 and ∠6 , ∠10

                                                            and  4) ∠8 , ∠12 and ∠7 , ∠11

Step-by-step explanation:

When two parallel line cuts by a another line (transversal).Then,

Alternate interior angles → it is the pair of a angles on the inner side of each of those two lines but on opposite sides of the transversal.

hence in the given figure

1)∠3 , ∠5 and ∠4, ∠6  and 2)∠7 , ∠9 and ∠8 , ∠10 are two pairs of alternate interior angles.

Now,

Corresponding angles → the angles are the ones at the same location at each intersection.

Hence in the given figure

1) ∠1 , ∠5 and ∠2 , ∠6  2) ∠4 , ∠8 and ∠3 , ∠7  3) ∠5 , ∠9 and ∠6 , ∠10 and  4) ∠8 , ∠12 and ∠7 , ∠11 are four pairs of corresponding angles.

ACCESS MORE