Answer:
[tex]x^{\circ}=56^{\circ};[/tex]
The exterior angle has measure [tex]116^{\circ}.[/tex]
Step-by-step explanation:
Angle QRP and angle with measure of (2x+4)° are supplementary, then
[tex]m\angle QRP+(2x+4)^{\circ}=180^{\circ},\\ \\m\angle QRP=180^{\circ}-(2x+4)^{\circ}.[/tex]
The sum of the measures of all interior angles of the triangle is equal to 180°, then
[tex]m\angle PQR+m\angle QRP+m\angle RPQ=180^{\circ},\\ \\x^{\circ}+180^{\circ}-(2x+4)^{\circ}+60^{\circ}=180^{\circ},\\ \\x^{\circ}-2x^{\circ}=-60^{\circ}+4^{\circ},\\ \\-x^{\circ}=-56^{\circ},\\ \\x^{\circ}=56^{\circ}.[/tex]
The exterior angle has measure
[tex](2\cdot 56+4)^{\circ}=116^{\circ}.[/tex]