In parallelogram ABCD point K belongs to diagonal BD so that BK:DK=1:4. If the extension of AK meets BC at point E, what is the ratio of BE:EC?

Respuesta :

frika

Answer:

BE : EC = 1 : 3

Step-by-step explanation:

Consider triangles AKD and EKB. In these triangles

  • ∠AKD≅∠EKB as vertical angles;
  • ∠ADK≅∠EBK as alternate interior angles;
  • ∠KAD≅∠KEB as alternate interior angles.

Then ΔAKD is similar to ΔEKB by AAA theorem.

Similar triangles have proportional corresponding sides:

[tex]\dfrac{AD}{EB}=\dfrac{AK}{EK}=\dfrac{DK}{KB}.[/tex]

Since [tex]\dfrac{DK}{KB}=\dfrac{4}{1},[/tex] then [tex]AD=4BE.[/tex]

Opposite sides in parallelogram have the same lengths, then [tex]BC=AD.[/tex]

Now

[tex]BC=BE+EC,\\ \\BC=\dfrac{1}{4}BC+EC,\\ \\EC=BC-\dfrac{1}{4}BC=\dfrac{3}{4}BC.[/tex]

Find the ratio

[tex]\dfrac{BE}{EC}=\dfrac{\frac{1}{4}BC}{\frac{3}{4}BC}=\dfrac{1}{3}.[/tex]

Ver imagen frika

Answer:   BE : EC = 1:3

Step-by-step explanation:

ACCESS MORE