use the function below to find f(–2). f(x) = 3^x.

When an exponent is negative, you move it to the other side of the fraction to make the exponent positive.
For example:
[tex]x^{-2}[/tex] or [tex]\frac{x^{-2}}{1} =\frac{1}{x^2}[/tex]
[tex]\frac{1}{y^{-3}} =\frac{y^3}{1}[/tex] or y³
f(-2) This means that x is -2, so you can plug in -2 for "x" in the equation
[tex]f(x)=3^x[/tex]
[tex]f(-2)=3^{-2}[/tex]
[tex]f(-2)=\frac{1}{3^2}[/tex]
[tex]f(-2)=\frac{1}{9}[/tex]
Your answer is D
The value of the function f(-2) will be 1/9
A mathematical relationship from a set of inputs to a set of outputs is called a function.
The given function is f(x) = [tex]3^{x}[/tex]
∴ f(-2) will be = [tex]3^{-2}[/tex]
So, [tex]3^{-2}[/tex] will be equal to 1/9
∴ The value of f(-2) will be 1/9
Option D is correct.
Find more about "Functions" here: brainly.com/question/4025726
#SPJ2