which of the following is equal to the fraction below? (7/4)^ 11

When you multiply an exponent directly into another exponent, you multiply the exponents
(for a fraction, you multiply the exponent to both the numerator and denominator)
For example:
[tex](x^{2})^5=x^{2(5)}=x^{10}[/tex]
[tex](\frac{x^3}{y^2} )^5=\frac{x^{3(5)}}{y^{2(5)}} =\frac{x^{15}}{y^{10}}[/tex]
[tex](\frac{7}{4})^{11}=(\frac{7^1}{4^1})^{11}=\frac{7^{11}}{4^{11}}[/tex]
Your answer is A
Answer:
[tex](\frac{7^{11}}{4^{11}})[/tex]
Step-by-step explanation:
[tex](\frac{7}{4})^{11}[/tex]
To simplify this fractional exponent we apply exponential property
[tex](\frac{x}{y})^m=\frac{x^m}{y^m}[/tex]
As per this property , we multiply the exponent inside the fraction
Multiply the exponent 11 inside the fraction
Multiply the exponent 11 with 7 and then 4
[tex](\frac{7}{4})^{11}[/tex]
[tex](\frac{7^{11}}{4^{11}})[/tex]