Respuesta :
Answer:
3x + 18y = 4
Subtract 3x from both sides.
18y= -3x + 4
Divide both sides by 18.
y = -3/18x + 4/18
Simplify.
y = -1/6x + 2/9
-1/6 to +6/1, or 6.
y = 6x + b
Input the x and y values and solve for b.
1 = 6(-2) + b
1 = -12 + b
Add 12 to both sides.
13 = b
y = 6x + 13
[tex]\bf (\stackrel{x_1}{-4}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{4}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{4-1}{-2-(-4)}\implies \cfrac{3}{-2+4}\implies \cfrac{3}{2} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-1=\cfrac{3}{2}[x-(-4)]\implies y-1=\cfrac{3}{2}(x+4) \\\\\\ y-1=\cfrac{3}{2}x+6\implies y=\cfrac{3}{2}x+7[/tex]