Respuesta :

Answer:

3x + 18y = 4

Subtract 3x from both sides.

18y= -3x + 4

Divide both sides by 18.

y = -3/18x + 4/18

Simplify.

y = -1/6x + 2/9

-1/6 to +6/1, or 6.

y = 6x + b

Input the x and y values and solve for b.

1 = 6(-2) + b

1 = -12 + b

Add 12 to both sides.

13 = b

y = 6x + 13


[tex]\bf (\stackrel{x_1}{-4}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{4}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{4-1}{-2-(-4)}\implies \cfrac{3}{-2+4}\implies \cfrac{3}{2} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-1=\cfrac{3}{2}[x-(-4)]\implies y-1=\cfrac{3}{2}(x+4) \\\\\\ y-1=\cfrac{3}{2}x+6\implies y=\cfrac{3}{2}x+7[/tex]