What are the solutions of the quadratic equation (x + 3)(x +3) = 49? Ax = -2 and x = -16 Bx = 2 and x = -10 Cx = 4 and x = -10 Dx = 40 and x = -58

Respuesta :

Answer:

4 and -10

Step-by-step explanation:

[tex]\displaystyle (x + 3)(x +3) = 49 \\ x^2+3x+3x+9=49 \\ x^2 +6x+9=49 \\ x^2 + 6x + 9 - 49 = 0 \\x^2+6x-40=0 \\\\ \Delta=b^2-4ac \\ \Delta=6^2-4 \cdot 1 \cdot (-40) \\ \Delta=36+160 \\ \Delta=196 \\ \\ X_{1,2}=\frac{-b \pm \sqrt{\Delta} }{2a}  \\ \\ X_1=\frac{-b+\sqrt{\Delta} }{2a} = \frac{-6+14}{2} = \frac{8}{2}=4 \\ \\ X_2=\frac{-b-\sqrt{\Delta} }{2a}  = \frac{-6-14}{2}=\frac{-20}{2} = -10[/tex]