contestada

the half-life of carbon-14 is 5,730 years. After 11,460 year, how much of original carbon-14 remains?

Respuesta :

Via the half-life equation:

[tex]A_{final}=A_{initial}(\frac{1}{2})^{\frac{t}{h}}[/tex]

Where the time elapse is 11,460 year and the half-life is 5,730 years.

[tex]A_{final}=A_{initial}(\frac{1}{2})^\frac{11460}{5730} \\\\A_{final}=A_{initial}\frac{1}{4} \\\\A_{final}=\frac{1}{4}A_{initial}[/tex]

Therefore after 11,460 years the amount of carbon-14 is one fourth (1/4) of the original amount.