Respuesta :
Answer:
cosΘ = [tex]\frac{\sqrt{21} }{5}[/tex]
Step-by-step explanation:
using the trigonometric identity
• sin²Θ + cos²Θ = 1 , hence
cosΘ = ± [tex]\sqrt{1-sin^2Θ}[/tex]
Since Θ is in the first quadrant then cosΘ > 0
cosΘ = [tex]\sqrt{1-(2/5)^2}[/tex]
= [tex]\sqrt{1-4/25}[/tex] = [tex]\sqrt{21/25}[/tex] = [tex]\frac{\sqrt{21} }{5}[/tex]
The value of [tex]\cos \theta[/tex] is required.
The value of [tex]\cos\theta=\dfrac{\sqrt{21}}{5}[/tex]
[tex]\sin \theta=\dfrac{2}{5}[/tex]
We have the identity
[tex]\sin^2\theta+\cos^2\theta=1\\\Rightarrow \cos\theta=\sqrt{1-\sin^2\theta}\\\Rightarrow \cos\theta=\sqrt{1-\left(\dfrac{2}{5}\right)^2}\\\Rightarrow \cos\theta=\sqrt{\dfrac{21}{25}}=\dfrac{\sqrt{21}}{5}[/tex]
The value of [tex]\cos\theta=\dfrac{\sqrt{21}}{5}[/tex]
Learn more:
https://brainly.com/question/16861618?referrer=searchResults