Respuesta :

Answer:

cosΘ = [tex]\frac{\sqrt{21} }{5}[/tex]

Step-by-step explanation:

using the trigonometric identity

• sin²Θ + cos²Θ = 1 , hence

cosΘ = ± [tex]\sqrt{1-sin^2Θ}[/tex]

Since Θ is in the first quadrant then cosΘ > 0

cosΘ = [tex]\sqrt{1-(2/5)^2}[/tex]

         = [tex]\sqrt{1-4/25}[/tex] = [tex]\sqrt{21/25}[/tex] = [tex]\frac{\sqrt{21} }{5}[/tex]



The value of [tex]\cos \theta[/tex] is required.

The value of [tex]\cos\theta=\dfrac{\sqrt{21}}{5}[/tex]

[tex]\sin \theta=\dfrac{2}{5}[/tex]

We have the identity

[tex]\sin^2\theta+\cos^2\theta=1\\\Rightarrow \cos\theta=\sqrt{1-\sin^2\theta}\\\Rightarrow \cos\theta=\sqrt{1-\left(\dfrac{2}{5}\right)^2}\\\Rightarrow \cos\theta=\sqrt{\dfrac{21}{25}}=\dfrac{\sqrt{21}}{5}[/tex]

The value of [tex]\cos\theta=\dfrac{\sqrt{21}}{5}[/tex]

Learn more:

https://brainly.com/question/16861618?referrer=searchResults