Respuesta :

Answer: (x - 3)² + y² = [tex]\frac{100}{9}[/tex]

Step-by-step explanation:

Circle Formula: (x - h)² + (y - k)² = r²  ; (h, k) is the center & r is the radius

Use the distance formula for (3, 0) and (1, [tex]\frac{8}{3}[/tex])

[tex]r = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

[tex]r = \sqrt{(3-1)^{2}+(0-\frac{8}{3})^{2}}[/tex]

[tex]r = \sqrt{(2)^{2}+(-\frac{8}{3})^{2}}[/tex]

[tex]r = \sqrt{4+\frac{64}{9}}[/tex]

[tex]r = \sqrt{\frac{36}{9}+\frac{64}{9}}[/tex]

[tex]r = \sqrt{\frac{100}{9}}[/tex]

[tex]r = \frac{10}{3}[/tex]

****************************************************

Center (h, k) = (3, 0)   Radius (r) = [tex]\frac{10}{3}[/tex]

(x - h)² + (y - k)² = r²

(x - 3)² + (y - 0)² = ([tex]\frac{10}{3}[/tex])²

(x - 3)² + y² = [tex]\frac{100}{9}[/tex]