Answer: (x - 3)² + y² = [tex]\frac{100}{9}[/tex]
Step-by-step explanation:
Circle Formula: (x - h)² + (y - k)² = r² ; (h, k) is the center & r is the radius
Use the distance formula for (3, 0) and (1, [tex]\frac{8}{3}[/tex])
[tex]r = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]
[tex]r = \sqrt{(3-1)^{2}+(0-\frac{8}{3})^{2}}[/tex]
[tex]r = \sqrt{(2)^{2}+(-\frac{8}{3})^{2}}[/tex]
[tex]r = \sqrt{4+\frac{64}{9}}[/tex]
[tex]r = \sqrt{\frac{36}{9}+\frac{64}{9}}[/tex]
[tex]r = \sqrt{\frac{100}{9}}[/tex]
[tex]r = \frac{10}{3}[/tex]
****************************************************
Center (h, k) = (3, 0) Radius (r) = [tex]\frac{10}{3}[/tex]
(x - h)² + (y - k)² = r²
(x - 3)² + (y - 0)² = ([tex]\frac{10}{3}[/tex])²
(x - 3)² + y² = [tex]\frac{100}{9}[/tex]