The height of a trapezoid can be expressed as x – 4, while the bases can be expressed as x + 4 and x + 9. if the area of the trapezoid is 99 cm2 , find the length of the larger base.

Respuesta :

Answer: 19 cm

Step-by-step explanation:

[tex]A_{trapezoid}=\frac{b_{1}+b_{2}}{2}*h[/tex]

                99 = [tex]\frac{(x+4 + x+9}{2}*(x - 4)[/tex]

                99 = [tex]\frac{(2x + 13}{2}*(x - 4)[/tex]

              198 = (2x + 13)(x - 4)

              198 = 2x² + 5x - 52

                 0 = 2x² + 5x - 250

                 0 = 2x²- 20x + 25x - 250

                 0 = 2x(x - 10) + 25( x - 10)

                 0 = (2x + 25)(x - 10)

0 = 2x + 25     or        0 = x - 10

  [tex]-\frac{25}{2}[/tex] = x      or          x = 10

Since length cannot be negative, [tex]-\frac{25}{2}[/tex] can be disregarded

Larger base: x + 9  = 10 + 9   = 19

Answer:

Length of the larger base is 19 cm.

Step-by-step explanation:

Height of the trapezoid = (x - 4)

Bases of the trapezoid = (x + 4) and (x + 9)

Area of the trapezoid = 99 cm²

We know the formula,

Area of trapezoid = [tex]\frac{1}{2}(\text{Sum of bases})\times (\text{Distance between the bases}})[/tex]

99 = [tex]\frac{1}{2}[(x + 4)+(x + 9)](x - 4)[/tex]

99 = [tex]\frac{1}{2}[2x + 13](x - 4)[/tex]  

99×2 = (2x + 13)(x - 4)

198 = 2x² - 8x + 13x - 52

2x² + 5x - 52 - 198 = 0

2x² + 5x - 250 = 0

2x² + 25x - 20x - 250 = 0

x(2x + 25) - 10(2x + 25) = 0

(2x + 25)(x - 10) = 0

(2x + 25) = 0

2x = -25

x = -[tex]\frac{25}{2}[/tex]

Since length of the base can not be negative.

Therefore, (x - 10) = 0 will be the solution

x = 10 cm

Length of the larger base = x + 9

= 10 + 9

= 19 cm