Answer:
[tex]\frac{77x^{3}+104x+312}{56x^{2}(x+3)}[/tex]
Step-by-step explanation:
The original expression:
[tex]\frac{13}{7x^{2}} + \frac{11x}{ 8(x + 3)}[/tex]
Multiply each term by the product of the denominators:
[tex]= \frac{13\times8(x+3)}{7x^{2}\times 8(x+3)} + \frac{7x^{2}\times11x}{7x^{2}\times8(x+3)}[/tex]
Add the two fractions:
[tex]= \frac{13\times8(x+3)+7x^{2}\times11x}{7x^{2}\times 8(x+3)}[/tex]
Combine like terms:
[tex]= \frac{104(x+3)+77x^{3}}{56x^{2}(x+3)}[/tex]
Simplify the numerator:
[tex]= \frac{77x^{3}+104x+312}{56x^{2}(x+3)}[/tex]