Respuesta :
[tex]\bf (\stackrel{x_1}{-2}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{-1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-1-(-3)}{1-(-2)}\implies \cfrac{-1+3}{1+2}\implies \cfrac{2}{3}[/tex]
Answer:
The slope of the line that passes through [tex](-2, -3)[/tex] and [tex](1, -1)[/tex] is [tex]\frac{2}{3}[/tex].
Step-by-step explanation:
The slope of a line is represented by [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex], where the variables are [tex](x_1, y_1), (x_2, y_2)[/tex].
Now, we can substitute the variables into the equation.
[tex]\frac{(-1)-(-3)}{1-(-2)}[/tex]
Now just solve the equation.
[tex]\frac{(-1)-(-3)}{1-(-2)}=\frac{2}{3}[/tex]