Respuesta :
Answer:
C. 16.3
Step-by-step explanation:
The function for exponential growth is,
[tex]y(t)=Ae^{rt}[/tex]
where,
y(t) = the future amount,
A = initial amount,
r = rate of growth,
t = time.
As the population of bacteria in a Petri dish doubles every 24 h, so
[tex]\Rightarrow 2A=Ae^{r\times 24}[/tex]
[tex]\Rightarrow 2=e^{r\times 24}[/tex]
[tex]\Rightarrow \ln 2=\ln e^{r\times 24}[/tex]
[tex]\Rightarrow \ln 2={r\times 24}\times \ln e[/tex]
[tex]\Rightarrow \ln 2={r\times 24}\times 1[/tex]
[tex]\Rightarrow r\times 24=\ln 2[/tex]
[tex]\Rightarrow r=\dfrac{\ln 2}{24}[/tex]
The population of the bacteria is initially 500 organisms, so the function becomes,
[tex]y(t)=500e^{\frac{\ln 2}{24}\times t}[/tex]
We have to calculate t, when the the population of bacteria becomes 800. So,
[tex]\Rightarrow 800=500e^{\frac{\ln 2}{24}\times t}[/tex]
[tex]\Rightarrow \dfrac{800}{500}=e^{\frac{\ln 2}{24}\times t}[/tex]
[tex]\Rightarrow \ln \dfrac{800}{500}=\ln e^{\frac{\ln 2}{24}\times t}[/tex]
[tex]\Rightarrow \ln 1.6={\dfrac{\ln 2}{24}\times t}\times \ln e[/tex]
[tex]\Rightarrow \ln 1.6={\dfrac{\ln 2}{24}\times t}\times 1[/tex]
[tex]\Rightarrow \ln 1.6={\dfrac{\ln 2}{24}\times t[/tex]
[tex]\Rightarrow t=\dfrac{\ln 1.6}{\frac{\ln 2}{24}}[/tex]
[tex]\Rightarrow t=16.3\ h[/tex]