Respuesta :

Answer:

Given the equation: [tex]3x^2+10x+c =0[/tex]

A quadratic equation is in the form: [tex]ax^2+bx+c = 0[/tex] where a, b ,c are the coefficient and a≠0 then the solution is given by :

[tex]x_{1,2} = \frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex] ......[1]

On comparing with given equation we get;

a =3 , b = 10

then, substitute these in equation [1] to solve for c;

[tex]x_{1,2} = \frac{-10\pm \sqrt{10^2-4\cdot 3 \cdot c}}{2 \cdot 3}[/tex]

Simplify:

[tex]x_{1,2} = \frac{-10\pm \sqrt{100- 12c}}{6}[/tex]

Also, it is given that the difference of two roots of the given equation is [tex]4\frac{2}{3} = \frac{14}{3}[/tex]

i.e,

[tex]x_1 -x_2 = \frac{14}{3}[/tex]

Here,

[tex]x_1 = \frac{-10 + \sqrt{100- 12c}}{6}[/tex] ,     ......[2]

[tex]x_2= \frac{-10 - \sqrt{100- 12c}}{6}[/tex]       .....[3]

then;

[tex]\frac{-10 + \sqrt{100- 12c}}{6} - (\frac{-10 + \sqrt{100- 12c}}{6}) = \frac{14}{3}[/tex]

simplify:

[tex]\frac{2 \sqrt{100- 12c} }{6} = \frac{14}{3}[/tex]

or

[tex]\sqrt{100- 12c} = 14[/tex]

Squaring both sides we get;

[tex]100-12c = 196[/tex]

Subtract 100 from both sides, we get

[tex]100-12c -100= 196-100[/tex]

Simplify:

-12c = -96

Divide both sides by -12 we get;

c = 8

Substitute the value of c in equation [2] and [3]; to solve [tex]x_1 , x_2[/tex]

[tex]x_1 = \frac{-10 + \sqrt{100- 12\cdot 8}}{6}[/tex]

or

[tex]x_1 = \frac{-10 + \sqrt{100- 96}}{6}[/tex] or

[tex]x_1 = \frac{-10 + \sqrt{4}}{6}[/tex]

Simplify:

[tex]x_1 = \frac{-4}{3}[/tex]

Now, to solve for [tex]x_2[/tex] ;

[tex]x_2 = \frac{-10 - \sqrt{100- 12\cdot 8}}{6}[/tex]

or

[tex]x_2 = \frac{-10 - \sqrt{100- 96}}{6}[/tex] or

[tex]x_2 = \frac{-10 - \sqrt{4}}{6}[/tex]

Simplify:

[tex]x_2 = -2[/tex]

therefore, the solution for the given equation is: [tex]-\frac{4}{3}[/tex] and -2.