Answer:
The sum of first 4n terms is -10n.
Step-by-step explanation:
The formula for sum of n terms of an AP is
[tex]S_n=\frac{n}{2}[2a+(n-1)d][/tex]
It is given that the sum of the first n terms of an A. P. is 2n and the sum of the first 2n terms is n.
[tex]\frac{n}{2}[2a+(n-1)d]=2n[/tex]
[tex]2a+(n-1)d=4[/tex] ..... (1)
[tex]\frac{2n}{2}[2a+(2n-1)d]=n[/tex]
[tex]2a+(2n-1)d=1[/tex] ..... (2)
Solve equation (1) and (2) by elimination method.
[tex]d=-\frac{3}{n}[/tex]
[tex]a=\frac{1}{2}(7-\frac{3}{n})[/tex]
The sum of first 4n terms is
[tex]S_{4n}=\frac{4n}{2}[2a+(4n-1)d][/tex]
[tex]S_{4n}=2n[2a+(4n-1)d][/tex]
Put the value of a and d.
[tex]S_{4n}=2n[2(\frac{1}{2}(7-\frac{3}{n}))+(4n-1)(-\frac{3}{n})][/tex]
[tex]S_{4n}=2n[7-\frac{3}{n}-12+\frac{3}{n}][/tex]
[tex]S_{4n}=2n[-5][/tex]
[tex]S_{4n}=-10n[/tex]
Therefore the sum of 4n terms is -10n.