contestada

The sum of the first n terms of an A. P. is 2n and the sum of the first 2n terms is n. Find the sum of the first 4n terms.

Respuesta :

Answer:

The sum of first 4n terms is -10n.

Step-by-step explanation:

The formula for sum of n terms of an AP is

[tex]S_n=\frac{n}{2}[2a+(n-1)d][/tex]

It is given that the sum of the first n terms of an A. P. is 2n and the sum of the first 2n terms is n.

[tex]\frac{n}{2}[2a+(n-1)d]=2n[/tex]

[tex]2a+(n-1)d=4[/tex]                          ..... (1)

[tex]\frac{2n}{2}[2a+(2n-1)d]=n[/tex]

[tex]2a+(2n-1)d=1[/tex]                          ..... (2)

Solve equation (1) and (2) by elimination method.

[tex]d=-\frac{3}{n}[/tex]

[tex]a=\frac{1}{2}(7-\frac{3}{n})[/tex]

The sum of first 4n terms is

[tex]S_{4n}=\frac{4n}{2}[2a+(4n-1)d][/tex]

[tex]S_{4n}=2n[2a+(4n-1)d][/tex]

Put the value of a and d.

[tex]S_{4n}=2n[2(\frac{1}{2}(7-\frac{3}{n}))+(4n-1)(-\frac{3}{n})][/tex]

[tex]S_{4n}=2n[7-\frac{3}{n}-12+\frac{3}{n}][/tex]

[tex]S_{4n}=2n[-5][/tex]

[tex]S_{4n}=-10n[/tex]

Therefore the sum of 4n terms is -10n.