Respuesta :

Answer:

[tex]h(x')=\frac{x}{2} +\frac{2}{3}[/tex]

Step-by-step explanation:

We are given the following function:

[tex]h(x)=2x-\frac{4}{3}[/tex]

To find the inverse of this function, we will put this function equal to y (another variable) and then make x the subject of it.

[tex]y=2x-\frac{4}{3}[/tex]

[tex]y+\frac{4}{3} =2x[/tex]

[tex]\frac{y}{2} +\frac{4}{6} =x[/tex]

[tex]x=\frac{y}{2} +\frac{2}{3}[/tex]

Now changing back the variable y to x to make it the inverse of h(x) to get:

[tex]h(x')=\frac{x}{2} +\frac{2}{3}[/tex]

Therefore, the inverse of the given function h(x) is [tex]h(x')=\frac{x}{2} +\frac{2}{3}[/tex].

Answer:

h^-1(x) = (3x+4)/2

answer choice c