Respuesta :

gmany

The point-slope form:

[tex]y-y_1=m(x-x_1)[/tex]

We have the point (6, -7) and the slope m = -3/2. Substitute:

[tex]y-(-7)=-\dfrac{3}{2}(x-6)\\\\\boxed{y+7=-\dfrac{3}{2}(x-6)}[/tex]

[tex]y+7=-\dfrac{3}{2}(x-6)[/tex]          use distributive property

[tex]y+7=-\dfrac{3}{2}x+9[/tex]            subtract 7 from both sides

[tex]\boxed{y=-\dfrac{3}{2}x+2}[/tex]

[tex]y=-\dfrac{3}{2}x+2[/tex]         multiply both sides by 2

[tex]2y=-3x+4[/tex]             add 3x to both sides

[tex]\boxed{3x+2y=4}[/tex]

Answer:

point-slope form: [tex]y+7=-\dfrac{3}{2}(x-6)[/tex]

slope-intercept form: [tex]y=-\dfrac{3}{2}x+2[/tex]

standard form: [tex]3x+2y=4[/tex]