To find the inverse, let's isolate x:
[tex] y=k\log_2(x) \iff \dfrac{y}{k} = \log_2(x) \iff 2^{\frac{y}{k}} = 2^{\log_2(x)} \iff 2^{\frac{y}{k}} = x [/tex]
So, the inverse function is
[tex] f^{-1}(x) = 2^{\frac{x}{k}} [/tex]
We know that the inverse gives 8 when evaluated at x=1, so
[tex] f^{-1}(1) = 2^{\frac{1}{k}} =8[/tex]
Now, since [tex] 8=2^3 [/tex], we need
[tex] \dfrac{1}{k}=3 \iff k=\dfrac{1}{3} [/tex]
So, the inverse function is
[tex] f^{-1}(x) = 2^{3x} [/tex]
Which means that
[tex] f^{-1}\left(\dfrac{2}{3}\right) = 2^{3\frac{2}{3}}=2^2=4 [/tex]