Respuesta :

Answer:

The general solution of given system is [tex]x(t)=C_1e^{6t}\cos t+C_2e^{6t}\sin t[/tex] and [tex]y(t)=C_1e^{6t}\cos t+C_2e^{6t}\sin t[/tex].

Step-by-step explanation:

The given differential equations are

[tex]\frac{dx}{dt}=8x-y[/tex]       .... (1)

[tex]\frac{dy}{dt}=5x+4y[/tex]      .... (2)

Differentiate both equations with respect to t.

[tex]x''=8x'-y'[/tex]                       ...... (3)

[tex]y''=5x'+4y'[/tex]                    ..... (4)

Using equation (3) and (2).

[tex]x''=8x'-(5x+4y)[/tex]

[tex]x''=8x'-5x-4y)[/tex]

[tex]x''=8x'-5x-4(8x-x')[/tex]                   (Using 1)

[tex]x''=8x'-5x-32x+4x')[/tex]

[tex]x''=12x'-37x[/tex]

[tex]x''-12x'+37x=0[/tex]

[tex]r^2-12r+37=0[/tex]

Using Quadratic formula

[tex]r=\frac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]

[tex]r=\frac{12\pm \sqrt{144-148} }{2(1)}[/tex]

[tex]r=6\pm i[/tex]

If [tex]r=\alpha+i\beta[/tex], then

[tex]y(x)=e^{\alpha x}(C_1\cos \beta x+C_2\sin \beta x)[/tex]

Therefore x(t) is defined as

[tex]x(t)=e^{6t}(C_1\cos t+C_2\sin t)[/tex]

Using equation (4) and (1).

[tex]y''=5(8x-y)+4y'[/tex]

[tex]y''=40x-5y+4y'[/tex]

[tex]y''=40(\frac{y'-4y}{5})-5y+4y'[/tex]                     (Using 2)

[tex]y''=8(y'-4y)-5y+4y'[/tex]

[tex]y''=8y'-32y-5y+4y'[/tex]

[tex]y''+12y'-37y=0[/tex]

[tex]r^2-12r+37=0[/tex]

Using Quadratic formula

[tex]r=\frac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]

[tex]r=\frac{12\pm \sqrt{144-148} }{2(1)}[/tex]

[tex]r=6\pm i[/tex]

Therefore y(t) is defined as

[tex]y(t)=e^{6t}(C_1\cos t+C_2\sin t)[/tex]