Respuesta :
We have to know final temperature of the gas after it has done 2.40 X 10³ Joule of work.
The final temperature is: 75.11 °C.
The work done at constant pressure, W=nR(T₂-T₁)
n= number of moles of gases=6 (Given), R=Molar gas constant, T₂= Final temperature in Kelvin, T₁= Initial temperature in Kelvin =27°C or 300 K (Given).
W=2.4 × 10³ Joule (Given)
From the expression,
(T₂-T₁)=[tex]\frac{W}{nR}[/tex]
(T₂-T₁)= [tex]\frac{2.40 X 10^{3} }{6 X 8.314}[/tex]
(T₂-T₁)= 48.11
T₂=300+48.11=348.11 K= 75.11 °C
Final temperature is 75.11 °C.
The final temperature of the gas after it has done the given work is determined as 75.11 ⁰C.
Final temperature of the gas
The final temperature of the gas can be determined from ideal gas equation as shown below;
PV = nRT
W = nRΔT
ΔT = W/nR
ΔT = (2400)/(6 x 8.314)
ΔT = 48.11 ⁰C
T₂ = ΔT + T₁
T₂ = 48.11 + 27
T₂ = 75.11 ⁰C
Learn more about temperature here: https://brainly.com/question/25677592
#SPJ5