Respuesta :

Answer:

(a+b,c)

Step-by-step explanation:

Note that the midpoint formula is:

[tex](\frac{x_{1} +x_{2}}{2}, \frac{y_{1} +y_{2}}{2})[/tex]

Point A (0,0) and Point C (2a+2b,2c)

It follows that:

[tex](\frac{(2a+2b +0}{2}, \frac{2c+0}{2})\\(\frac{(2(a+b)}{2}, \frac{2c}{2})\\\\(a+b,c)[/tex]


gmany

[tex]\text{The formula of a midpoint:}\\\\\left(\dfrac{x_1+x_2}{2};\ \dfrac{y_1+y_2}{2}\right)\\\\\text{We have}\ A(0,\ 0)\ \text{and}\ C(2a+2b,\ 2c).\\\\\text{Substitute:}\\\\x=\dfrac{0+2a+2b}{2}=\dfrac{2a}{2}+\dfrac{2b}{2}=a+b\\\\y=\dfrac{0+2c}{2}=\dfrac{2c}{2}=c\\\\Answer:\ \boxed{c.\ (a+b,\ c)}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico