Respuesta :
a) C₂H₄ (g) + 2Cl₂ → C₂H₂Cl₄ (l) + H₂ (g), ΔH°rxn = -385.76 kJ
ΔH°rxn = ∑ΔH°f (products) - ∑ΔH°f (reactants)
ΔH°rxn = [ΔH°f (C₂H₂Cl₄) + ΔH°f (H₂)] - [ΔH°f (C₂H₄) + 2ΔH°f (Cl₂)]
-385.76 = [ΔH°f (C₂H₂Cl₄) + 0] - [ 52.3 + 2 (0) ]
ΔH°f (C₂H₂Cl₄) = -385.76 + 52.3 = -333.46 kJ /mol
For second reaction:
C₂H₂Cl₄ (l) → C₂HCl₃ (l) + HCl (g)
ΔH°rxn = ΔH°f (C₂HCl₃ ) + ΔH°f (HCl) - ΔH°f (C₂H₂Cl₄)
= -276.2 + (-92.3) -(-333.46)
ΔH°rxn = -35.04 kJ/mol
b) C₂H₄ (g) + 2Cl₂ (g) → C₂HCl₃ (l) + H₂ (g) + HCl (g)
standard heat of reaction = ΔH°₁+ ΔH°₂
= -385.76 - 35.04 = -420.8 kJ/mol
c) Q = ΔH = -420.8 kJ/mol × 307 mol/hr = -129185 kJ/hr of heat evolved.
Answer:
Standard heat of the reaction is -420.8 kJ/mol
35.9 kW
Explanation:
Hess's law allows determination of total enthalpy change in a process based on the sum of enthalpy change of steps:
To produce trichloroethylene (C₂HCl₃) the reactions are:
C₂H₄(g) + 2Cl₂(g) → C₂H₂Cl₄(l) + H₂(g)
ΔH°rxn = [ΔH°f (C₂H₂Cl₄) + ΔH°f (H₂)] - [ΔH°f (C₂H₄) + 2ΔH°f (Cl₂)] = -385.76 kJ/mol.
As ΔH°f (H₂) and ΔH°f (Cl₂) are 0:
ΔH°f (C₂H₂Cl₄) - ΔH°f (C₂H₄) = -385.76 kJ/mol
As ΔH°f (C₂H₄) is 52.30 kJ/mol:
ΔH°f (C₂H₂Cl₄) - 52.30 kJ/mol = -385.76 kJ/mol
ΔH°f (C₂H₂Cl₄) = -333.46 kJ/mol
And C₂H₂Cl₄(l) → C₂HCl₃(l) + HCl(g); ΔHf C₂HCl₃(l) = -276.2 kJ/mol
Where:
ΔH°rxn = [ΔH°f (C₂HCl₃) + ΔH°f (HCl)] - [ΔH°f (C₂H₂Cl₄)]
Knowing: ΔHf C₂HCl₃(l) = -276.2 kJ/mol; ΔH°f (HCl) = -92.31 kJ/mol; ΔH°f (C₂H₂Cl₄) = -333.46 kJ/mol:
ΔH°rxn = -276.2 kJ/mol - 92.31 kJ/mol + 333.46 kJ/mol
ΔH°rxn = -35.1 kJ/mol
The sum of both reactions gives:
C₂H₄(g) + 2Cl₂(g) → C₂HCl₃(l) + H₂(g) + HCl(g). Using Hess's law, the standard heat of this reaction is:
ΔH = -385.76 kJ/mol - 35.1 kJ/mol = -420.8 kJ/mol
As the production of 1 mole of C₂HCl₃(l) gives -420.8 kJ of energy, 307 mol/h gives:
307 mol/h × (-420.8 kJ/mol) = -129186 kJ/h × (1h / 3600s) = 35.9 kJ/s = 35.9 kW
I hope it helps!