Respuesta :

Answer:

(w-7(w+1)(w-6)

Step-by-step explanation:

given that one of the factors is (w − 7)

Divide the given expression by w-7

Use long division

                           w^2 -5w - 6

                       -------------------------------------

           w-7        w^3 − 12w^2 + 29w + 42

                         (-)w^3 - 7w^2

                        -------------------------------------------

                                   -5w^2 + 29w

                                 (-)-5w^2 + 35 w

                       ----------------------------------------------------

                                                   -6w    + 42

                                                 (-) -6w    + 42

                                  --------------------------------------------------

                                                         0

                                --------------------------------------------------

Now we factor the quotient  w^2 -5w - 6

[tex]w^2 -5w - 6[/tex]

We need two factors whose sum is -5  and product is -6

-6  and 1 gives us sum -5  and product -6

[tex](w-6)(w+1)[/tex]

[tex]w^3 - 12w^2 + 29w + 42 = (w-7(w+1)(w-6)[/tex]


Answer:

The factors of w^3 − 12w^2 + 29w + 42 are (w -7), (w-6) and (W + 1 )


Step-by-step explanation:

It is given that (w − 7) is one factor of w^3 − 12w^2 + 29w + 42


When we divide w^3 − 12w^2 + 29w + 42 by w-7 we get the quotient W^2 – 5w -6 and remainder 0


Therefore

w^3 − 12w^2 + 29w + 42 can be written as,

w^3 − 12w^2 + 29w + 42 = (w -7)(W^2 – 5w -6 )  


When we factorize W^2 – 5w -6 we get

W^2 – 5w -6 = (w+1)(w-6)

Therefore,

The factors of w^3 − 12w^2 + 29w + 42 are (w -7), (w-6) and (W + 1 )  

The long division method is attached  with this answer      

Ver imagen imlittlestar
RELAXING NOICE
Relax