Answer:
a) [tex]V=X\cdot (L-2x)\cdot (W-2x),[/tex] the domain is [tex]0<x<\dfrac{L}{2}[/tex] and [tex]0<x<\dfrac{W}{2}[/tex]
b) Optimal dimensions of the box are 16 units, 16 units, 4 units.
The maximal value for volume is 1024 cubic units.
attached picture is correct, domain is not correct.
Step-by-step explanation:
a) Consider reatangle with length L and width W. Squares with sides of length x are cut out of each corner of a rectangle. Then the length of inner rectangle (see attached diagram) is L-2x and the width is W-2x.
The resulting piece of cardboard is then folded into a box without a lid. The height of this box is x and the volume is
[tex]V=X\cdot (L-2x)\cdot (W-2x).[/tex]
Note that x must be positive [tex]<\dfrac{L}{2}\ and\ <\dfrac{W}{2}.[/tex]
b) If L=W=24 units, then
[tex]V(x)=X\cdot (24-2x)\cdot (24-2x)=2x(12-x)^2=4x(144-24x+x^2)=576x-96x^2+4x^3.[/tex]
Find the derivative:
[tex]V'(x)=576-96\cdot 2x+4\cdot 3x^2=576-192x+12x^2=12(48-16x+x^2).[/tex]
When [tex]V'(x)=0,[/tex] you get
[tex]x^2-16x+48=0,\\ \\D=(-16)^2-4\cdot 48=256-192=64,\\ \\x_{1,2}=\dfrac{16\pm 8}{2}=12,\ 4.[/tex]
Since [tex]12=\dfrac{24}{2}\ \left(\dfrac{L}{2}\right),[/tex] this solution is extra.
When x<4, V'(x)>0 (volume is increasing) and when x>4, then V'(x)<0 (volume is decreasing). This means that x=4 is point of maximum and maximal value for volume is
[tex]V(4)=576\cdot 4-96\cdot 4^2+4\cdot 4^3=2304-1536+256=1024\ un^3.[/tex]
Optimal dimensions of the box are 16 units, 16 units, 4 units.