Will give BRAINIEST! Can someone answer this question in 3 sentences or more? Nuclear energy is produced when scientists force uranium (U) atoms to break apart. With this in mind, examine the list below. If scientists were to break apart each of the items on the list, which items would still be classified in the same way? Which items would be classified differently? Consider the definition for each as you respond. • atoms • elements • compound • molecules • matter

Respuesta :


Atomic energy has had a mixed history in the half-century or so since the world's first commercial nuclear power plant opened at Calder Hall (now Sellafield) in Cumbria, England in 1956. Huge amounts of world energy have been produced from atoms ever since, but amid enormous controversy. Some people believe nuclear power is a vital way to tackle climate change; others insist it is dirty, dangerous, uneconomic, and unnecessary. Either way, it helps if you understand what nuclear energy is and how it works—so let's forget the politics for a moment and take a closer look at the science.


Photo: Nuclear energy—the past or the future? Sleek modern solar panels in the foreground with the now-decommissioned Rancho Seco nuclear plant, Sacramento, California, right behind them. Will nuclear energy tide us over until we can convert the world to renewable energy? Or is it an expensive distraction? Photo by Warren Gretz courtesy of US DOE/NREL (US Department of Energy/National Renewable Energy Laboratory).


What is atomic energy?

NASA nuclear reactor at Plum Brook Station Sandusky Ohio


Photo: Carefully controlled: Before it was closed in the 1970s, NASA's scientific nuclear reactor at Plum Brook Station in Sandusky Ohio was used for developing materials for the space program. The site now does other kinds of cutting-edge space research. Picture courtesy of NASA Glenn Research Center (NASA-GRC).


It's not immediately obvious but tall buildings store energy—potential energy. You have to work hard to lift bricks and other building materials up off the ground into the right position and, as long as they remain where you put them, they can store that energy indefinitely. But a tall, unstable building is bound to collapse sooner or later and, when it does so, the materials from which it was built come crashing back down to the ground, releasing their stored potential energy as heat, sound, and kinetic energy (the bricks could fall on your head!).


Atoms (the building blocks of matter) are much the same. Some large atoms are very stable and quite happy to stay as they are pretty much forever. But other atoms exist in unstable forms called radioactive isotopes. They're the atomic equivalents of wobbly old buildings: sooner or later, they're bound to fall apart, splitting into bits like a large building tumbling to the ground and releasing energy on the way. When large atoms split into one or more smaller atoms, giving off other particles and energy in the process, we call it nuclear fission. That's because the central part of the atom (the nucleus) is what breaks up and fission is another word for splitting apart. Nuclear fission can happen spontaneously, in which we case we call it radioactive decay (the conversion of unstable, radioactive isotopes into stable atoms that aren't radioactive). It can also be made to happen on demand—which is how we get energy out of atoms in nuclear power plants. That type of fission is called a nuclear reaction.


How much energy can one atom make?

Albert Einstein in later life with white frizzy hair


Photo: Albert Einstein—godfather of nuclear energy. Photo courtesy of US Library of Congress.


A surprisingly large amount! That was what physicist Albert Einstein meant when he wrote out this simple and now famous equation:


E = mc2


If E is energy, m is mass (the scientific word for the ordinary stuff around us), and c is the speed of light, Einstein's equation says that you can turn a tiny amount of mass into a huge amount of energy. How come? Looking at the math, c is a really huge number (300,000,000) so c2 is even bigger: 90,000,000,000,000,000. That's how many joules (the standard measurement of energy) you'd get from a kilogram of mass. In theory, if you could turn about seven billion hydrogen atoms completely to energy, you'd get about one joule (that's about as much energy as a 10-watt light-bulb consumes in a tenth of a second). Remember, though, these are just ballpark, guesstimate numbers. The only point we really need to note is this: since there are billions and billions of atoms in even a tiny spec of matter, it should be possible to make lots of energy from not very much at all. That's the basic idea behind nuclear power.


In practice, nuclear power plants don't work by obliterating atoms completely; instead, they split very large atoms into smaller, more tightly bound, more stable atoms. That releases energy in the process—energy we can harness. According to a basic rule of physics called the law of conservation of energy, the energy released in a nuclear fission reaction is equal to the total mass of the original atom (and all the energy holding it together) minus the total mass of the atoms it splits into (and all the energy holding them together). For a more detailed explanation of why nuclear reactions release energy, and how much they can release, see the article binding energy on Hyperphysics.

ACCESS MORE