Write the equation of the ellipse with center (4,2), vertex (9,2), and focus (4+2sqrt5,2)

Answer : option B
Given: center (4,2), vertex (9,2), and focus (4+2sqrt5,2)
The distance between vertex and center is 9-4 = 5
Center is (h,k) so h= 4 and k =2
focus is (h+c,k)
From the given focus (4+2sqrt5,2), c= 2sqrt(5)
Standard form of equation is
[tex]\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2}=1[/tex]
h= 4, k=2, a=5, c=2sqrt(5), we need to find out b
[tex]c^2 = a^2 - b^2[/tex]
[tex]b^2 = a^2 - c^2[/tex]
[tex]b^2 = 5^2 - (2\sqrt{5})^2[/tex]
[tex]b^2 = 25 - 20[/tex]
b^2 = 5
plug in all the values
[tex]\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2}=1[/tex]
[tex]\frac{(x-4)^2}{25} + \frac{(y-2)^2}{5}=1[/tex]
Option B is correct