contestada

A cone-shaped tent has a diameter of 12 ft and a height of 6 ft.
What is the approximate volume of the tent?
Use 3.14 to approximate pi, and express your final answer to the nearest tenth.
______ft3

Respuesta :

Here's the formula for the volume of a cone:

[tex]V=\frac{1}{3}\pi\ r^2h[/tex]

Plug in 3.14 for [tex]\pi[/tex].
Plug in 6 for the height [tex]h[/tex].
Our radius is half of our diameter. [tex]r=6[/tex].

[tex]V\approx\frac13\times3.14\times6^2\times6[/tex]

6² = 6 × 6 = 36.
Now we just multiply together 1/3, 3.14, 36, and 6 to get...

[tex]V\approx226.08[/tex]

Rounding to the nearest tenth...

[tex]\boxed{V\approx226.1\ ft^3}[/tex]
Cone formula: 1/3([tex] \pi r^{2} h)[/tex]
     
Step 1(Fill in formula): 1/3((3.14)([tex] 6^{2} [/tex])(6))
Step 2 (Solve): 1/3((3.14)(36)(6))
Step 3 (Solve): 1/3(678.24)
Step 4 (Complete) : 226.08ft³