Respuesta :

gmany

If ABCD is a rhombus, then diagonals are perpendicular.

Therefore [tex]12y^o=90^o\to y^o=\dfrac{90^o}{12^o}=7.5^o[/tex]

[tex]m\angle FCB=(4y-2)^o[/tex]

Substitute:

[tex]m\angle FCB=(4(7.5)-2)^o=(30-2)^o=28^o[/tex]

We know: The sum of the measures of angles in a triangle is equal 180°.

Therefore we have the equation:

[tex]m\angle FBC+28^o+90^o=180^o\\\\m\angle FBC+118^o=180^o\qquad\text{subtract}\ 118^o\ \text{from both sides}\\\\m\angle FBC=62^o[/tex]

BD is bisector of ∠ABC. Therefore [tex]m\angle ABF=m\angle FBC=62^o[/tex]

[tex]m\angle ABC=m\angle ABF+m\angle FBC\\\\m\angle ABC=62^o+62^o=124^o[/tex]

ACCESS MORE