Answer:
[tex]y=11.93\cdot (1.42)^x.[/tex]
Step-by-step explanation:
Find the exponential model of best fit for the points (−3,5), (1,12), (5,72), (7,137) as a function
[tex]y=a\cdot b^x.[/tex]
Use the graphing calculator to plot points on the coordinate plane and connect them by a line that is the graph of the exponential function
[tex]y=11.93\cdot (1.42)^x.[/tex]
You can find a and b substituting coordinates of the points (−3,5) and (7,137) into the equation [tex]y=a\cdot b^x:[/tex]
[tex]5=a\cdot b^{-3},\\ \\137=a\cdot b^7.[/tex]
Then
[tex]\dfrac{137}{5}=\dfrac{ab^7}{ab^{-3}}=b^{10},\\ \\b=\sqrt[10]{27,4}\approx 1.42.[/tex]
Then [tex]a=5b^3=5\cdot (1.42)^3\approx 11.93.[/tex]