what is the length of AB

Answer:
[tex]\boxed{\boxed{\overline{AB}=16}}[/tex]
Step-by-step explanation:
In the triangle ABC, m∠ABC=90°. Hence, it is right angle triangle.
[tex]\tan \theta=\dfrac{p}{b}=\dfrac{AB}{64}[/tex] --------1
In the triangle ABD, m∠ABD=90°. Hence, it is right angle triangle.
[tex]\cot (90-\theta)=\dfrac{b}{p}=\dfrac{4}{AB}[/tex]
As [tex]\cot (90-\theta)=\tan \theta[/tex], so
[tex]\tan \theta=\dfrac{b}{p}=\dfrac{4}{AB}[/tex] ---------2
From equation 1 and 2,
[tex]\Rightarrow \dfrac{AB}{64}=\dfrac{4}{AB}[/tex]
[tex]\Rightarrow AB^2=64\times 4[/tex]
[tex]\Rightarrow AB^2=256[/tex]
[tex]\Rightarrow AB=\sqrt{256}[/tex]
[tex]\Rightarrow AB=16[/tex]