On a certain hot​ summer's day, 435 people used the public swimming pool. The daily prices are $ 1.50 for children and $ 2.50 for adults. The receipts for admission totaled $ 884.50 .  How many children and how many adults swam at the public pool that​ day?

Respuesta :

#1 1.5x + 2.5y = 884.50

#2 x + y = 435

Remember, x represents the children and y represents the adult

The first equation represents the cost of tickets, while the second one represents the number of people.

Find x in equation #2 & plug it into equation #1.
(usually choose easiest equation to solve first, but it's your preference)

x + y = 435
x = 435 - y. ***

Use the equation*** above and plug it into equation #2.

Plugging in x, to solve for y:

1.5(x) + 2.5y = 884.50

1.5(435 - y) + 2.5y = 884.50

652.50 - 1.5y + 2.5y = 884.50
(subtract 652.50 from both sides)

-1.5y + 2.5y = 232

y = 232

Solve for x using equation #2 (or whichever you prefer) and plug in y.
x + y = 435
x + 232 = 435
(subtract 232 from both sides)

x = 203

There were 203 children and 232 adults at the pool that day.
ACCESS MORE