Respuesta :
Simplifying the expression [tex](x^2 + 2xy + y2)(x+1)[/tex], by applying the distributive property, we would have: [tex]\mathbf{x^3+ x^2+ 2x^2y + xy^2 + y^2 + 2xy}[/tex]
Given:
[tex](x^2 + 2xy + y2)(x+1)[/tex]
Required:
Simplify the expression
Thus, to simplify the expression, [tex](x^2 + 2xy + y2)(x+1)[/tex], we would apply the distributive property as shown below:
[tex]x(x^2 + 2xy + y^2)+1(x^2 + 2xy + y^2)\\\\x^3 + 2x^2y + xy^2 + x^2 + 2xy + y^2[/tex]
- Rearrange
[tex]\mathbf{x^3+ x^2+ 2x^2y + xy^2 + y^2 + 2xy}[/tex]
Therefore, simplifying the expression [tex](x^2 + 2xy + y2)(x+1)[/tex], by applying the distributive property, we would have: [tex]\mathbf{x^3+ x^2+ 2x^2y + xy^2 + y^2 + 2xy}[/tex]
Learn more here:
https://brainly.com/question/22474308