If f(x)=2x and g(x)=/x, what is the domain of (f o g)(x)? A) x=>0 B) x=0 C)x=<0 D) all real numbers

[tex]f(x)=2x,\ g(x)=\sqrt{x}\\\\(f\circ g)(x)=2\sqrt{x}\\\\The\ domain:\\\\\boxed{x \geq 0}[/tex]
Answer:
Domain is [tex]x\geq 0[/tex]
Step-by-step explanation:
[tex]f(x)= 2x[/tex]
[tex]g(x)=\sqrt{x}[/tex]
Now find (fog)(x)
[tex](fog)(x)= f(g(x))[/tex]
Plug in square root (x) for g(x)
[tex](fog)(x)= f(g(x))=f(\sqrt{x})[/tex]
Now we plug in sqrt(x) for x in f(x)
[tex](fog)(x)= f(g(x))=f(\sqrt{x})=2\sqrt{x}[/tex]
To find out the domain , we find the domain of 2square root (x)
To find domain of square root function , we set x>=0
Domain is [tex]x\geq 0[/tex]